Assessing Health-Related Fitness Tests in the School Setting: Reliability, Feasibility and Safety; The ALPHA Study

Abstract

The aim of this study was to determine the reliability, feasibility and safety of a health-related fitness test battery administered by Physical Education (PE) teachers in the school setting. Six PE teachers, from three primary schools and three secondary schools, assessed twice (7 days apart) the 20 m shuttle run, handgrip and standing long jump tests, as well as weight, stature, triceps and subscapular thickness and waist circumference in 58 children (age: 6–11 yr) and 80 adolescents (age: 12–18 yr). Feasibility and safety were assessed by researchers by means of direct observation. Significant inter-trial differences were found for the standing long jump test (3.8 ± 12.7 cm, P < 0.05) and for stature (0.73 ± 0.8 cm, P < 0.001) in children, and for waist circumference in both children and adolescents (−0.82 ± 1.2 cm and −0.35 ± 0.8 cm respectively, P = 0.001). The feasibility and safety items assessed presented a successful answer. Therefore, the results indicate that health-related fitness tests administered by PE teachers are reliable, feasible and safe to be performed in the school setting.

Introduction

Physical fitness is considered an important health-related marker already in youth [23, 27]. Physical fitness can be objectively and accurately measured through laboratory methods, yet due to the high cost, necessity of sophisticated instruments, qualified technicians, and the time constraints, laboratory tests are still not feasible to be used at population level. In contrast, field-based fitness tests are easy to administer, involve minimal equipment, low cost and a larger number of participants can be evaluated in a relatively short period of time [24, 26, 30]. In the school setting, field-based fitness tests are a practical and feasible option to assess physical fitness.

Validity and reliability are two characteristics that need to be assured for any measurement tool [8]. Validity refers to the ability of a test to reflect what it is designed to measure, and reliability refers to the reproducibility of a test in repeated trials on the same individual/s. A reliable test is considered when an individual performs a test on two or more occasions under the same conditions and close proximity in time and obtains similar results [13].

Several studies determined the reliability of health-related fitness tests assessed by trained researchers under standardized and controlled circumstances in youth [9, 10, 15, 18–22, 25, 28]. Whether fitness tests are still reliable enough when performed in the school setting by physical education (PE) teachers remain to be investigated. The school setting is an ideal place to carry out fitness monitoring because virtually all the children and adolescents attend elementary and secondary school and therefore can be systematically monitored [32]. Schools may play an important role in identifying children with low fitness via standardized field tests and promoting positive fitness-enhancing behaviours. If this is the case, feasibility and safety are major concerns in testing [33], however studies examining these issues in children and adolescents are scarce.

The aim of the present study was to determine the reliability, feasibility and safety of a health-related fitness test battery administered in the school setting by PE teachers.
Methods

The present study was performed under the framework of the ALPHA (Assessing Levels of Physical Activity and Fitness) study. The ALPHA study is a European Union-funded project aiming to provide a set of instruments for assessing levels of physical activity as well as health-related physical fitness in a comparable way within the European Union. A detailed description of the ALPHA study has been published elsewhere [17].

PE teachers randomly chosen, with 5-years university degree in Sport Sciences and qualified for PE teaching in the school, were informed about the aims and methodology of the study and volunteered to participate. Likewise, a comprehensive verbal description of the nature and purposes of the study was given to the children, adolescents and their parents. Both students and their parents or guardian signed a written consent form to participate in the study. It was performed in accordance with the ethical standards of the International Journal of Sport Medicine [12].

Six PE teachers from three primary schools and three secondary schools (2 women and 4 men) with a teaching experience ranging from 3 to 12 years, administered twice (7 days apart) a health-related fitness test battery in 58 children (aged 6–11.9 years) and 80 adolescents (aged 12–18 years) in Granada (Spain). The physical fitness measurements were administered during the PE lessons. The fitness test battery was administered in two standard PE lessons, plus other two additional lessons to administer the re-test measurement one week later. The two physical fitness measurements were performed at the same time of day and by the same PE teacher.

Physical fitness assessment

A detailed standard operating procedure was designed and thoroughly read by every PE teacher one week before the data collection started. Questions were solved in a consensus meeting. In addition, an individual (one PE teacher at time) one-day (5 h) training session was carried out before data collection by two experienced researchers. They were trained on (i) anthropometric measurements (how to identify the Frankfort plane, how to measure the skinfolds); (ii) fitness assessment (how to measure the fitness level in children and adolescents, assessment preparation, and how to distinguish correct and incorrect trials); (iii) and about how to handle the questionnaires. This process was performed to ensure standardization of data collection. As the measurements were performed in the real school setting, every PE teacher organized the tests according to their own school circumstances, i.e., test inside or outside, 20 m shuttle run test in one or more groups, anthropometry in a specific room or in the classroom, etc.

The health-related physical fitness components assessed were: cardiopulmonary fitness, musculoskeletal fitness and body composition (weight, stature, triceps skinfold, subscapular skinfold and waist circumference). The inclusion of body composition as a component of health-related physical fitness was completed following the recommendations of the Toronto model [6] and the ACSM guidelines [2]. The scientific rationale for the selection of the physical fitness tests was based on their evidence-based predictive validity [27] and criterion-related validity [7].

Cardiorespiratory fitness

It was assessed by means of the 20 m shuttle run test. The participants performed the test as previously described by Léger et al. [14]. Participants were required to run between two lines 20 m apart, while keeping pace with audio signals emitted from a pre-recorded CD. The initial speed was 8.5 km/h, and was increased by 0.5 km/h per minute (one minute equals one stage). Participants were instructed to run in a straight line, to pivot on completing a shuttle, and to pace themselves in accordance with the audio signals. The test was finished when the participant failed to reach the end lines concurrent with the audio signals on two consecutive occasions, or when the subject stopped because of fatigue. The participants were encouraged to keep running as long as possible throughout the course of the test. The test was performed once and the last completed stage or half-stage at which the subject dropped out was scored. A gymnasium or space large enough to mark out a 20 m track was used to perform the test.

Upper body muscular strength

It was assessed by means of the handgrip strength test using a hand dynamometer with adjustable grip (TKK 5101 Grip D: Takey, Tokio Japan). This dynamometer presents a high validity and reliability when compared with calibrated known weights [10]. The participant squeezed gradually and continuously for at least two seconds, performing the test with the right and left hands in turn, and with the elbow in full extension as described elsewhere [10]. The grip-span of the dynamometer was adjusted according to the hand size for determining the maximum handgrip strength using the equations specifically developed for children [9] and adolescents [29]. In children those equations were $y = x/4+0.44$ for boys and $y = 0.3x−0.52$ for girls while that in adolescents were $y = x/7.2+3.1$ for males and $y = x/4+1.1$ for females, where x is the hand size (in cm), and y is the grip span (in cm). The test was performed twice and the maximum score for each hand was recorded in kilograms. The sum of the scores achieved by left and right hands was used in the analysis.

Lower body muscular strength

It was assessed by means of the standing long jump test. From a starting position immediately behind a line, standing with feet approximately shoulder’s width apart, the participant jumped as far forwards as possible on a non-slip hard surface. The test was performed twice and the best score was recorded in centimeters.

Anthropometry

Participants were barefoot and wore a t-shirt and short trousers. Weight was measured with an electronic scale (Type SECA 861; range, 0.05 to 130 kg; precision, 0.05 kg), and stature was measured in the Frankfort plane with a telescopic stature measuring instrument (Type SECA 225; range, 60 to 200 cm; precision, 1 mm).

Triceps and subscapular skinfold thickness were measured on the right side of the body with a Holtain caliper (range, 0–40 mm; precision, 0.2 mm). Triceps was raised in a vertical fold halfway between the acromion process and the superior head of the radius, in the posterior aspect of the arm, and subscapular about 20 mm below the inferior angle of the scapula and 45° to the lateral side of the body. It was performed according to Lohman’s anthropometric standardization reference manual [16]. Waist circumference was measured with a non-elastic tape (Seca 200; range, 0–150 cm; precision, 1 mm), at the level of the natural waist, in a horizontal plane, which was the narrowest part of the torso, as seen from a front view. In some obese participants, it
was difficult to identify the waist circumference, therefore we measured it in the midpoint between the superior iliac spine and the costal edge in the midaxillary line [21]. The measurements were taken at the end of a normal expiration, without the tape compressing the skin. The measurements were carried out twice, but not consecutively; all the anthropometric variables were measured in order, and then the same measurements were repeated once more. The mean of the two measurements was used in the analyses.

Feasibility
The following items requiring yes/no answer were collected by the PE teachers or researchers: 1. Whether the children and adolescents wore appropriate sport clothes to perform the health-related fitness tests. 2. Information about whether the tests’ instructions were properly understood by the participants. 3. If any participant rejected to perform the measurements, and the reason/s (1 = shyness, 2 = lack of motivation). 4. We also asked the PE teachers about (i) the school’s appropriate facilities to perform the tests, (ii) if they considered the tests easy to administer, and (iii) their previous experience in administering these tests. 5. Furthermore, we also registered the time required by the PE teacher to prepare and administer the tests. An acceptable level of feasibility was considered when the items were ‘positively’ answered in at least 95% of the cases [35].

Safety
We recorded the following items requiring yes/no answer: 1. Instrument allergy, in the case of anthropometric and hand-grip assessments. 2. Sick feeling, in all the tests. 3. Pain in hand or forearm in handgrip test. 4. We also recorded musculoskeletal injuries during or after the physical fitness assessment. 5. Delayed-onset muscle soreness (DOMS) was assessed with a questionnaire that was completed 2 to 3 days after testing took place. This questionnaire included questions about the experience and severity of DOMS, the location of the pain or soreness, the particular test that could cause the DOMS, and the functional consequences of DOMS in usual activities. The DOMS-related questionnaire was completed by individual interviews. An acceptable level of safety was considered when the items were successfully answered in the 99% of the cases. The level of safety was higher than the level of feasibility because we considered the safety an important aspect of the physical fitness tests. Feasibility and safety of the tests were assessed by two trained researchers with previous experience by means of direct observation, i.e. they were in the classroom when the physical fitness tests were being administered by the PE teachers.

Statistical analysis
Test and retest (hereafter called T1 and T2) were compared between boys and girls and between children and adolescents by means of two-way repeated measures analysis of variance (ANOVA), with sex and age group as fixed factors. Since no sex-specific effect on reliability of the studied physical fitness tests was found (all $P > 0.2$), the analyses were performed for girls and boys together. However, age group-specific effect on reliability was found in three of the study tests (all $P < 0.05$), therefore the analyses were performed for the whole sample as well as for children and adolescents separately.

Potential systematic error between test and retest (also called bias) was analyzed by means of repeated measures ANOVA. The differences between test and retest scores was also examined through different error measures. Suppose that N cases are available to evaluate the error measurements, where \hat{y} is T2 and y is T1. The sum of squared errors (SSE) was calculated as:

$$SSE = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

We also calculated the mean sum of squared errors (MSE):

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

The root mean sum of squared errors (RMSE) was calculated by converting MSE into domain units by taking the root square:

$$RMSE = \sqrt{MSE}$$

The percentage error was calculated as:

$$\% Error = \frac{RMSE}{y_{max} - y_{min}} \times 100$$

We also calculated the standard error of estimate [31] as follows:

$$SEE = SD \sqrt{1 - R^2_{\hat{y}y}}$$

where SD is the standard deviation of the T1 for every test, and R^2 is the explained variance between the measured T1 and T2. Moreover, the inter-trials agreement was also examined graphically by plotting the difference between each pair of measurements against their mean, according to the Bland and Altman approach [4,5]. The 95% limits of agreement for all the physical fitness variables were calculated as the inter trials mean difference ± 1.96 SD of the inter trial differences.

The presence of heteroscedasticity was examined by using one-way ANOVA in order to determine whether the absolute inter-trials difference was associated with the magnitude of the measurement (i.e., inter-trials mean). For that purpose, age group-specific quartiles of the inter-trials mean were established. A significant association ($P < 0.05$) would confirm heteroscedasticity, which means that the inter-trials difference of a test would differed with the physical fitness level groups. All analyses were performed using SPSS v.16 software for Windows. For all analyses, the significant level was set at 5%.

Results

Physical fitness assessment
Mean and SD values for the test and retest trials according to age groups are shown in Table 1. The inter-trials measurement error for the whole sample is shown in Table 2. Significant differences between test and retest were found in stature and waist circumference ($P < 0.001$). Significant inter-trials differences were found in stature for children ($P < 0.001$), in waist circumference for both children and adolescents ($P = 0.001$), and in the standing long jump test only for children ($P < 0.05$) (Table 3). The Bland-Altman plots (Fig. 1) graphically show the reliability patterns, in terms of systematic error (bias or mean inter-trial differences) and random error (95% limits of agreement), in...
those measurements which presented a significant inter-trial difference. Those measurements were stature and standing long jump in children (0.73 ± 0.8 cm and 3.8 ± 12.7 cm, respectively), and waist circumference for both children and adolescents (−0.82 ± 1.2 cm and −0.35 ± 0.8 cm, respectively). The heteroscedasticity analysis showed a positive association between inter-trial differences and inter-trial mean in weight for adolescents (P < 0.01), in stature for children (P < 0.05) and in skinfolds thickness (triceps and subscapular) for both children and adolescents (P < 0.05) (data not shown).

Feasibility

Most of the feasibility items presented a positive answer in ≥95% of the cases (Table 4). The only exception was the body composition assessment, specially triceps and subscapular skinfold thickness, which was considered by the PE teachers as not easy to measure in 17.8% of the cases, mainly because they were not familiarized with the equipment.

The maximum time required to prepare the tests was approximately 3 min in the anthropometrical assessment and 3 min in the physical fitness assessment (only handgrip strength and standing long jump). Preparing the 20 m shuttle run test took approximately 5 min. The mean time required to perform the anthropometric assessment was around 5 min per subject, approximately 1 min for the took and stature and 4 min for waist circumference, triceps and subscapular. Handgrip and standing long jump tests took 90 and 50 s, respectively. It took around 10 min to assess the 20 m shuttle run test in a group of 20 individuals. Overall, the average time required to prepare and administer the whole battery to a group of 20 individuals was 2 h and 30 min, which equals to approximately 3 PE sessions of ~55 min. The time required was shorter if triceps and subscapular skinfold thickness were not included in the battery: ~2 h to assess 20 persons (i.e. 2 PE sessions of ~55 min).

The experience reported by the PE teachers in administering health-related fitness tests was as follows: previous experience measuring weight was reported by 50% (3 teachers), 66.7% (4 teachers) for stature, 83.3% (5 teachers) for standing long jump test and 66.7% (4 teachers) for 20 m shuttle run test. None of the teachers reported to have ever assessed the handgrip test, skinfolds thickness or waist circumference.

Safety

Most of the safety items presented a successful answer in ≥99% of the cases (Table 4). No complications occurred during the testing procedure. Only one participant interrupted the 20 m shuttle run test because of lower body muscle cramp.

The responses rate for the DOMS questionnaire was 133 participants (96.4%). Among the responders, 22 (37.9%) children and 25 (33.3%) adolescents experienced some degree of DOMS, from which six children (10.3%) and four adolescents (5.3%) indicated that their DOMS was severe. Three (2.3%) subjects reported having severe pain in the upper body, 29 (21.8%) in lower body and 14 (10.5%) in the whole body. Most of them (39 participants; 29.3%) assumed that the 20 m shuttle run test could be the cause. For 11 (19%) children and 14 (18.7%) adolescents, DOMS caused difficulties in daily activities, especially stair climbing and walking.
Table 3 Intertrial measurement error by age group.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Intertrial difference (T2-T1)</th>
<th>SSE</th>
<th>MSE</th>
<th>RMSE</th>
<th>% Error</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight (kg)</td>
<td>Children: 0.02 ± 0.5</td>
<td>Adolescents: 0.13 ± 0.6</td>
<td>12.27</td>
<td>31.82</td>
<td>0.23</td>
<td>0.42</td>
</tr>
<tr>
<td>stature (cm)</td>
<td>Children: 0.73 ± 0.8</td>
<td>Adolescents: 0.11 ± 0.6</td>
<td>68.58</td>
<td>24.47</td>
<td>1.29</td>
<td>0.33</td>
</tr>
<tr>
<td>triceps skinfolds (mm)</td>
<td>Children: -0.31 ± 2.5</td>
<td>Adolescents: 0.44 ± 2.7</td>
<td>33.06</td>
<td>485.82</td>
<td>6.12</td>
<td>6.48</td>
</tr>
<tr>
<td>subscapular skinfolds (mm)</td>
<td>Children: 0.36 ± 1.7</td>
<td>Adolescents: 0.16 ± 2.5</td>
<td>162.23</td>
<td>405.83</td>
<td>3.06</td>
<td>5.41</td>
</tr>
<tr>
<td>waist circumference (cm)</td>
<td>Children: -0.82 ± 1.2</td>
<td>Adolescents: -0.35 ± 0.8</td>
<td>110.12</td>
<td>430.40</td>
<td>2.04</td>
<td>0.64</td>
</tr>
<tr>
<td>handgrip (kg)</td>
<td>Children: -0.5 ± 2.2</td>
<td>Adolescents: 0.2 ± 4.9</td>
<td>68.91</td>
<td>430.40</td>
<td>1.28</td>
<td>5.66</td>
</tr>
<tr>
<td>standing long jump (cm)</td>
<td>Children: 3.8 ± 12.7</td>
<td>Adolescents: -2.1 ± 13.4</td>
<td>9467</td>
<td>12806.75</td>
<td>200.9</td>
<td>5.64</td>
</tr>
<tr>
<td>20m shuttle run (stages)</td>
<td>Children: -0.11 ± 0.9</td>
<td>Adolescents: -0.01 ± 1.0</td>
<td>51.66</td>
<td>74.25</td>
<td>0.91</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* Significant differences were found between T1 and T2 (repeated measures ANOVA)
T2-T1 refers to Trial 2 minus Trial 1. Values are means ± standard deviation
SSE indicates sum of squared errors; MSE, mean of squared errors; RMSE, root mean squared errors; SEE, standard error of estimate
nearly 0.5 cm for stature and waist circumference and 4 cm for standing long jump (Table 3). This suggests that despite the significant differences between test and retest, from a practical point of view these tests can be used in the school setting to evaluate children and adolescents.

The heteroscedasticity analysis showed significant association between the magnitude of the measurement and the difference between test and retest in weight for adolescents, in stature for children and in skinfolds thickness (triceps and subscapular) for both children and adolescents. It is well known that accuracy in skinfolds thickness and circumferences is higher in lean subjects compared to obese subjects [7,11,26]. Differences in heteroscedasticity for weight and stature between children and adolescents can be due to their differences in the homogeneity (i.e. SD and range) between age groups. No heteroscedasticity was observed in physical fitness tests.

The information regarding the feasibility of the tests indicate the presence of some rejections because of shyness (especially for...
body composition) and lack of motivation, yet it occurred in less than 3% of the cases. In contrast, all the feasibility items presented a positive answer in ≥95% of the cases, indicating that the health-related fitness tests administered by PE teachers in the school setting seem to be feasible. All PE teachers reported that the school facilities were appropriate for performing the physical fitness tests. Moreover, all the physical fitness tests were considered easy to measure except for the body composition assessment, specially triceps and subscapular skinfold thickness, which were reported by PE teachers as difficult in 17.8% (n=24) of the participants. This could be due to the fact that the body composition assessment is more difficult to administer than handgrip, standing long jump or 20m shuttle run tests.

Regarding the safety of the measurements, ≥99% of the items presented a successful answer, indicating that the fitness tests seem to be safe when administered by PE teachers in the school setting. All the physical fitness tests were well tolerated by the children and adolescents. Occurrence of severe DOMS in 10 participants was the major concern. The 20m shuttle run test was reported to cause severe DOMS and difficulties in daily activities, especially in stair climbing and walking, among a small number of subjects (25). DOMS is considered to be typically experienced by all individuals regardless of fitness level, and is a normal physiological response to increased exertion and the performance of unfamiliar physical activities [3].

From a practical point of view, this study proposes a health-related fitness test battery that is reliable, feasible and safe to be administered by PE teachers in the school setting. Given the well-documented evidence about physical fitness as a marker of health status in children and adolescents [23,27] the provided battery will help to identify children and adolescents with low physical fitness levels, which will be useful for health promotion and disease prevention programs.

In conclusion, the present study indicates that a health-related fitness test battery including the 20m shuttle run, handgrip and standing long jump tests and measures on weight, stature, triceps and subscapular skinfolds, and waist circumference administered by PE teachers is reliable, feasible and safe to be performed in the school setting.

The results presented in this study, together with experiences from the previous projects across Europe (e.g. AVENA, EYHS, HELENA, IDEFICS) indicate that the fitness test battery examined could be a standardized battery, namely the ALPHA Fitness tests battery, to be used in schools as well as in population based studies.

Acknowledgements

This study study takes place under the frame of the ALPHA study, which takes place with the financial support of the public Health Executive Agency, DG Sanco, Health Information Strand (Ref: 2006120); The Spanish Ministry of Education (EX-2008-0641, AP-2005-3827, AP-2005-4358, EX-2007-1124, AP-2008-03806), and the Swedish Council for Working Life and Social Research (FAS) and the HELENA study funded by the European Community Sixth RTD Framework Programme (Contract FOOD-CT-2005-007034). We gratefully acknowledged the help of all the children and adolescents that took part in this study, and especially the physical education teachers involved in field work for their efforts and great enthusiasm.

Affiliations

1 University of Granada, Department of Medical Physiology, School of Medicine, Granada, Spain
2 Department of Biosciences and Nutrition, Unit for Preventive Nutrition, Karolinska Institutet, Huddinge, Sweden
3 Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Technical University of Madrid, Spain
4 EUMI Sagrado Corazón, University of Córdoba, Spain
5 School of Science, University of Cádiz, Department of Physical Education, Puerto Real, Spain

References

2 Armstrong LE, Whaley MH, Brubaker PH, Otto RM. ACSM’s Guidelines for Exercise Testing and Prescription. 7th edn., Lippincott Williams & Wilkins, American College of Sport Medicine, Guidelines Skin Fold Measurement, Philadelphia PA; 2005

Table 4 Feasibility and safety of the measurement protocol (no retest measurement).

<table>
<thead>
<tr>
<th></th>
<th>Body composition</th>
<th>Handgrip</th>
<th>Standing long jump</th>
<th>20m shuttle run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>appropriate sport clothes</td>
<td>Yes: 100 (138)</td>
<td>No: 0 (0)</td>
<td>0.8 (1)</td>
<td>0.8 (1)</td>
</tr>
<tr>
<td>test’s instructions understood</td>
<td>Yes: 99.2 (131)</td>
<td>No: 0.8 (1)</td>
<td>0.8 (1)</td>
<td>0.8 (1)</td>
</tr>
<tr>
<td>reject</td>
<td>2.9 (4)</td>
<td>97.1 (134)</td>
<td>100 (132)</td>
<td>100 (132)</td>
</tr>
<tr>
<td>shyness</td>
<td>2.2 (3)</td>
<td>97.8 (135)</td>
<td>100 (132)</td>
<td>100 (132)</td>
</tr>
<tr>
<td>lack of motivation</td>
<td>0 (0)</td>
<td>100 (138)</td>
<td>100 (132)</td>
<td>100 (132)</td>
</tr>
<tr>
<td>appropriate facilities</td>
<td>100 (6)</td>
<td>100 (6)</td>
<td>100 (6)</td>
<td>100 (6)</td>
</tr>
<tr>
<td>easy to measure</td>
<td>82.2 (111)</td>
<td>17.8 (24)</td>
<td>100 (6)</td>
<td>100 (6)</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>instrument allergy</td>
<td>0 (0)</td>
<td>100 (137)</td>
<td>100 (131)</td>
<td>100 (131)</td>
</tr>
<tr>
<td>sick feeling</td>
<td>0.7 (1)</td>
<td>99.3 (135)</td>
<td>100 (131)</td>
<td>100 (131)</td>
</tr>
<tr>
<td>pain in hand or forearm</td>
<td>–</td>
<td>0.8 (1)</td>
<td>99.2 (131)</td>
<td>100 (131)</td>
</tr>
<tr>
<td>injury</td>
<td>2.9 (4)</td>
<td>97.8 (135)</td>
<td>100 (132)</td>
<td>100 (132)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.8 (1)</td>
<td>99.2 (131)</td>
</tr>
</tbody>
</table>

Values are % (number of individuals)

* Questions answered by the physical education teacher

+ Muscle cramp
Training & Testing

